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A derivation based on the condition of dynamic equilibrium between a molecular complex and 
molecules of a gas is given for equations which allow the determination of the size of conden- 
sation nuclei and their subsequent growth within free molecular motion. 

1.  C r i t i c a l  S i z e  of  C o n d e n s a t i o n  N u c l e i  

The question of the c r i t i ca l  s ize  of drop fo rmat ions  can be approached not only f r o m  the phenomeno-  
logical  standpoint of t he rmodynamics  [1] but also by examining the dynamics  of in teract ion between c lus te red  
molecu les  and single gas molecu les ,  

At any instant  of t ime  the change in the number  of molecules  g in a complex is de te rmined  by the num-  
b e r  of molecu les  enter ing and leaving the complex .  If n+ molecules  enter  a complex during a t ime  per iod 
Tg n+ and n_ molecu les  l eave  it during a t ime  per iodT~,n_ ,  then the change in the number  of molecules  in 
thi~ complex  can be e x p r e s s e d  as 

dg n+ n_ (1) 
dt ~z,n. T* g,n .  

We will consider  the m e c h a n i s m  of succes s ive  col l is ions between the mo lecu l a r  complex and gas 
molecu le s .  During the t ime  ~-g one molecu le  en ters  the complex,  while during the t ime  ~ one molecule  
l eaves  it .  There fo re ,  (1) becomes  

dg 1 t 
dt Tg T * g 

(2) 

When Tg < ~-$, condensat ion occurs  and the number  of molecules  in the complex  i n c r e a s e s  (dg/dt > 0). 
When ~-g > ~-~, evapora t ion  occurs  and the number  of molecu les  in the complex  d e c r e a s e s  (dg/dt < 0). 

It is evident f r o m  Eq. (2) that  the complex  can exist  in dynamic equi l ibr ium only if the t i m e  of i n t e r ac -  
tion of the molecu les  with the complex  ~} becomes  equal to the t ime  of f r e e  motion of the complex ~g.  
Under  these  conditions dg/dt  = 0, and the number  of molecules  in the complex  r e m a i n s  constant .  

Such a m e t a s t a b l e  compl'ex will hencefor th  be  cal led c r i t i ca l .  The s ize  of a c r i t ica l  complex r c r  is 
de te rmined  by the number  of molecu les  it contains gc r  and the s ize  of a molecule  r l :  

= r ,  (3 )  

The quanti t ies  1/~-g and 1 /7~  c h a r a c t e r i z e ,  r e spec t ive ly ,  the probabi l i ty  of su rv iva l  o r  des t ruc t ion  of 
a s table  complex.  

Le t  us de te rmine  the t ime  of in teract ion between a molecule  and a complex containing (g + 1) m o l e -  
cu les .  According to the kinetic theory  of fluids [1], 

~+~ , ( 4 I  
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where the period of natural  vibrations 

A 
" g 0 ~  - . 

C l g  

Here  T is the tempera ture ,  k is the Boltzmann constant,  U 0 is the bond energy,  and A is the width of the 
potential gap. The mean re la t ive  velocity is 

C l g  : j~ r~/1 

where m i is the mass  of one molecule.  F r o m  this, 

= 2 1 - -  (4a) T2, , 

where  the t i fet tme of a complex containing two mNecuIes  (interaction t ime between two moIeeules  during 
collision) is 

~2" --  / - - - k - T  exp ~ . (4b) 
4 V 

We then determine the f ree  motion t ime for  a complex containing g molecules .  According to the kinet-  

ic theory  of gases  [2], 

%g ~ _-=-and ~1 ~ - -  
Clg C l l  

Here  the mean f ree  path length for  a complex containing g molecules is 

1 1 1 1 
3 2 

and X l is the f ree  path length for  a gas molecule;  n 1 is the concentration of single gas molecules ,  rg  is the 
s ize  of a complex containing g molecules .  

We find that 
z_~_g = 4 V2- , (5) 

1/;  ' 
where  the f r ee  motion t ime for  a molecule  is 

~1 (5a) 
T1 ~: 4 1 / -  k T  . . . . .  

V ~1711 

In Fig. 1 is shown the manner  in which the absolute values of Wg (curve 1) and of w~ (curve 2) change 
as functions of the number of molecules  in a complex.  It can be seen here  that, as g increases ,  the f ree  
motion t ime wg decreases  asymptot ical ly  while the coll ision t ime w~ reaches  its highest level .  When 
g = ger,  then ~g = T~ and the complex has reached its cr i t ical  s ize.  

As a resul t  of random fluctuations, the number of molecttles in a complex of cr i t ical  s ize can vary .  
The addition of one molecule to a complex of cr i t ical  s ize is accompanied by a decrease  in wg relat ive to 
its cr i t ical  value Tgcr Tger. ' The quantity dg/dt then becomes positive and a spontaneous growth of the 

complex (condensation) has s tar ted.  In this way, the threshold unstable complex during initial condensa-  
tion is a complex containing (gcr + 1) molecules .  Such a complex will henceforth be called a condensation 

nuel eus. 

Conversely,  the loss  of one molecule makes a cr i t ical  complex unstable, with ~g becoming g rea te r  
than ~'~ and dg/dt  < O. The size of the complex now decreases  spontaneously and evaporation takes place. 
In this way, the threshold unstable complex at the beginning of evaporation is one containing ( g c r - l )  m o l e -  

t a l e s .  
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Fig.  1. Change in the t ime  (see) of f r e e  motion ~-g and in 
the t ime  (sec) of interact ion between a molecule  and a com-  
plex ~ ,  as functions of the number of molecules  in the 
complex g (pcs): 1) f r e e  motion t ime ~ ,  2) t ime of in te r -  
act ion between a molecule  and the comp'[ex ~}. 

Fig.  2. Number of molecules  in a condensation nucleus,  as 
a function of the vapor subcooling t empera tu re  interval :  1) 
calculated by Eqs.  (13) and (15); 2) according to Ya. I. 
F renke l '  [1]. 

Based on the foregoing discussion,  we will de te rmine  the number  of molecules  contained in a complex 
of cr i t ica l  s ize .  

Considering (4a) and (4b) as well as (5) and (5a), we wri te  

g ] T  
and 

V2- ~1 V / =mlkT 
Tg (1 _k ~/~) 2 I +  g 

As was noted ea r l i e r ,  assuming ~ = 7g and taking into account (6) and (7) will yield the equation: 

A 

which de termines  the number  of molecules  ger  in a complex of cr i t ica l  s ize .  
1/gZcr negligible compared  to unity, we can wri te  

o r  

3--~ x~ ( U o )  
(1 + ~/'gcr) -----4 exp - -  

[/ oxp ( . 

(7) 

(s) 

When gcr  >> 1~ with the quantity 

(9) 

(lO) 

The radius of such a complex is 

rcr=2r~ [ ~ ~ ( -S-  exp - - -  

Inser t ing the f r e e  path length of a molecule  [2] 

kT 
~'1= 4nr~p 

2kT ] -  (11) 

(12) 
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into (10) and (11), we a r r i v e  at 

and 

[, get--- ~ P exp Uo (13) 

[ r ( ) ]  1 k T  e x p  U~ 
rcr=r~ ] / ~ r l  P - - ~  - - 1  , (14) 

which r e l a t e  the magni tudes of ger  and r c r  with the s ta te  p r o p e r t i e s  of the gas :  i ts  p r e s s u r e  p and t e m p e r a -  
tu re  T. 

We now de te rmine  the radius  of a condensation nucleus r* r co r responding  to the number  of molecules  
in a complex  

cr gcr + t. (15) 

Using (3), we can wr i te  fo r  these  condit ions:  

r ~ = r 11/get ~- 1. (16) 
Cr 

The fo rmulas  obtained h e r e  indicate that ,  knowing the sa tura t ion  t e m p e r a t u r e  T~ which co r re sponds  
to the vapor  p r e s s u r e  p, one can, for  every  amount of vapor  subeooling AT, de te rmine  without difficulty the 
s ize  of a condensation nucleus r ~ r  and the number  of molecu les  gcr  in a complex  of c r i t i ca l  s i ze .  

As an example ,  we de te rmine  the magni tudes  of g~cr for  wa te r  vapor  at p = 0.5 b a r .  

The calculated values of g~r a r e  given in Fig.  2 as a function of the subcooling t e m p e r a t u r e  in terval  
AT. Fo r  compar i son ,  the values  of gc r  calculated by the known Ya. I.  F r e n k e l '  f o r m u l a  [1] a re  also shown 
he re .  It is evident that  the number  of molecules  g*cr and thus the s ize  of the condensation nucleus rc* r ,  as 
was to be  expected,  d e c r e a s e s  cons iderab ly  when the subcooling t e m p e r a t u r e  in terval  AT i n c r e a s e s .  The 
widest  d i sc repancy  between values calcula ted by Eq. (1) and by  the cor responding  Ya. I .  F r e n k e l '  f o rmu la  
[1] is observed  in the range  of sl ight subeooling, when the condensation nuclei contain suff icient ly l a r g e r  
number s  of mo lecu le s .  As AT ~ 0, the s ize  of a condensat ion nucleus according to Ya. I .  F r enke l '  b e -  
comes  rcr* --. oo, which co r re sponds  to a f ia t  separa t ion  su r face .  Under  these  conditions,  calculat ions by 
the fo rmu la s  der ived h e r e  yield f inite values  for  the  radius  of condensate  d rops .  In the range  of g r e a t e r  
AT values ,  at the s a m e  t ime ,  the magni tude of gcr  calcula ted by  Eq. (10) is s eve ra l  t imes  g r e a t e r  than that 
of gcr  according  to Ya. I .  F r e n k e l '  [1]. 

In our opinion, these  d i sc repanc ies  r e l a t e  to the fac t  that the equations for  g* and r* r have  been c r  
der ived h e r e  f r o m  the concept  of a dynamic equi l ibr ium on a mic roscop ic  sca le  between molecu la r  c lu s t e r s  
and gas molecu les ,  while the Ya. I .  F r enke l '  f o rmula  is based  on the conditions of the rmodynamic  equil ib-  
r i um in a mac roscop i c  s y s t em .  

2 .  R a t e  of  G r o w t h  of  D r o p s  

When the f r e e  path length for  a gas molecule  X 1 is much  g r e a t e r  than the s ize  of liquid drops  rg ,  then 
the s t eady - s t a t e  heat  and m a s s  t r a n s f e r  between a drop containing g molecules  and the vapor  molecu les  is 
d i s c r e t e  in c h a r a c t e r  and can be descr ibed  by the equation: 

qi a = e  r T g i  r - - e l  T i f  (17) 

where  q is the heat  of condensat ion pe r  molecule ,  if, i a, and i r a r e  the quantit ies of molecu les  fal l ing on a 
drop,  absorbed,  and re f l ec ted  per  unit t ime ,  and Tg, T a r e  the drop and the gas t e m p e r a t u r e  r e spec t ive ly .  

The quantit ies of energy  pe r  one fal l ing molecu le  (ef) and per  one re f l ec ted  molecule  (er) of gas in 
Eq. (17) can be exp re s sed  as [3] 

1 
e f  - -  k T  (18) 

1 - -  ? 

and 

where  T is the adiabatic exponent.  

1 
e t := - -  k T ~  , (19) 

1 - - ?  
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Obviously, 

Considering (18), 

where  

i f=  i a + i~ . 

(19), and (20), we can wri te  (17) as follows: 

q + - -  kTg i a = - - -  kATif  , 
7--i 7--i 

AT = Tg--  T. 

(20) 

(21) 

It follows from (21) that 

1 khTi  f 
qi a = kTg - - - - - ~ *  

1 + - -  V-- 
q ( v -  1) 

(22) 

According to the kinetic theory  of gases [2], the number  of vapor  molecules  colliding every  second with 
a drop of radius  rg  is equal to 

I 

i f =  t/-2-a (q + %)2 V - ~ T  + ] n,. 
\% I 

when r l << rg ,  this express ion  simplif ies to 

i f  = l /-2ar~ V 8kT 
~ t m  1 

Introducing h e r e  the h e a t - t r a n s f e r  coefficient  

r F  k / SkT 
~ Z =  - - 4 -  " " | 1  - -  /71 7 1 I/  ~ml 

and consider ing (24), we obtain f rom (22) 

qf a = 4a~r~AT. 

kTz 

q(7--  1) ' 

Substituting 

(23) 

n r ( 2 4 )  

1 + kT~ 
q(7--  1) 

(25) 

(26) 

and 

l/8kT 
we have 

V~- k c 
4 7 - -1  nl 1-}-. ~ '  

(27) 

or ,  consider ing the equation of s ta te  fo r  a gas, 

y F  7 
4(7_1) Rp 1+~) (28) 

where  R is the gas constant and p is the gas densi ty.  

Using the resu l t s  of [2], we wri te  the kinematic v i scos i ty  of vapor as 

1 
v = -  ~IF. 

3 

Inserting the value of c from (29) into (28), we have 

3 K2- v 

(29) 

(30) 
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L e t  us now de te rmine  ~ as a function of Knudsen and Prandtl  m~mbers 

)h . % vp K n = ~ ,  P r ~  ~1 ' (31) 

where  Cp is the specif ic  heat  of a gas at constant  p r e s s u r e .  

F o r  this  purpose ,  we t r a n s f o r m  (30) into 

a 3 V 2  pr R 1 (32) 
a o 4(7--1) ~ c a ~1 + 

H e r e  ~0 is the heat  t r a n s f e r  coefficient  for  a sphere  in a continuous s t r e a m .  

Equation (32) r e p r e s e n t s  the mos t  genera l  solution to this p rob lem,  in t e r m s  of the P r  and Kn number s ,  
the ra t io  R /cp ,  the adiabatic exponent T, and the p a r a m e t e r ~  accounting fo r  the ra t io  of the energy  per  one 
molecu le  in a drop  to  the bond energy  of this  molecu le .  

According to Eq. (32), for  given physical  gas p a r a m e t e r s  (R, Cp, 7) the r e l a t ive  heat  t r a n s f e r  coef -  
f ic ient  is  a function of two bas ic  va r i ab les :  the Kn number  and 8- When r ~ 0, Eq. (32) conver t s  d i rec t ly  
into the known G. Gyarma thy  equation [4]. 

F o r  the operat ing conditions of a s t r e a m  turbine with wa te r  drops  suspended in a wa te r  vapor  a t m o s -  
phere ,  we obtain f r o m  (32): 

a 0.38 1 - - ~  . - - .  (33)  
% I + l f l  Kn 

Corresponding  calculat ions by  the G. Gyarmathy  equation (for/3 ~ 0) [4] yield a numer ica l  value of 0.32 fo r  
the coefficient  in (32). 
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