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A derivation based on the condition of dynamic equilibrium between a molecular complex and
molecules of a gas is given for equations which allow the determination of the size of conden-
gation nuclei and their subsequent growth within free molecular motion.

1. Critical Size of Condensation Nuclei

The question of the critical size of drop formations can be approached not only from the phenomeno~
logical standpoint of thermodynamics [1] but also by examining the dynamics of interaction between clustered
molecules and single gas molecules,

At any instant of time the change in the number of molecules g in a complex is determined by the num-
ber of molecules entering and leaving the complex, If n, molecules enter a complex during a time period
Tg pn+ and n_ molecules leave it during a time period Ték n-» then the change in the number of molecules in
this complex can be expressed as
d n n
g e (1)

dt Tg.n, Ten,

We will congider the mechanism of successive collisions between the molecular complex and gas
molecules, During the time Tg one molecule enters the complex, while during the time 'r§ one molecule
leaves it, Therefore, (1) becomes

dg 11

dt#-rg—rgf'

@)

When Tg< Tﬁa condensation occurs and the number of molecules in the complex increases (dg/dt > 0).
When 7g> Té’ evaporation occurs and the number of molecules in the complex decreases (dg/dt < 0).

It is evident from Eq, (2) that the complex can exist in dynamic equilibrium only if the time of interac-
tion of the molecules with the complex TE becomes equal to the time of free motion of the complex r g-
Under these conditions dg/dt = 0, and the number of molecules in the complex remains constant,

Such a metastable complex will henceforth be called critical. The size of a critical complex Tor is
determined by the number of molecules it contains g;,. and the size of a molecule ry:

[ Jp—
for=n /gcr' 3)

The quantities 1/7g and 1/7§ characterize, respectively, the probability of survival or destruction of
a stable complex.

Let us determine the time of interaction between a molecule and a complex containing (g + 1) mole-
cules, According to the kinetic theory of fluids [1],

Tge1 = To OXP ('Ui) ' (4)
kT
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where the period of natural vibrations

A
TO == .
Cig

Here T is the temperature, k is the Boltzmann constant, U, is the bond energy, and A is the width of the
potential gap, The mean relative velocity is

— 8kT 1
Cig = ) ( 1 + *) 3
:i'l:ml g
where m, is the mass of one molecule. From this,
T* 1
g
12"‘—1/2(1—g)’ (4a)

where the lifefime of a complex containing two molecules {(interaction time between two molecules during
collision) is

* A UD
Ty = 77_ exp 72—17 . (4b)
‘/ Rmy

We then determine the free motion time for a complex containing g molecules, According to the kinet-
ic theory of gases [2],

A M

= £.and Ty = = .
Cig ‘n

Ty

Here the mean free path length for a complex containing g molecules is
1 1 1 1

Ao e e —

TR (T
and ) is the free path length for a gas molecule; ny is the concentration of single gas molecules, rg is the
size of a complex containing g molecules,

We find that

T e 5)

v (14ve) ]/1 +-;— |

where the free motion time for a molecule is

N
T
nm,

(5a)

In Fig, 1 is shown the manner in which the absolute values of 7 g (curve 1) and of 'r’é (curve 2) change
as functions of the number of molecules in a complex. It can be seen here that, as g increases, the free
motion time 7¢ decreases asymptotically while the collision time T§ reaches its highest level. When
g = ger, then 7g = 'r§ and the complex has reached its critical size,

As a result of random fluctuations, the number of molecules in a complex of critical size can vary.
The addition of one molecule to a complex of critical size is accompanied by a decrease in T g relative to
its critical value Tg = Tgcr" The quantity dg/dt then becomes positive and a spontaneous growth of the
cr
complex (condensation) has started, In this way, the threshold unstable complex during initial condensa-
tion is a complex containing (gep + 1) molecules, Such a complex will henceforth be called a condensation

nucleus,

Conversely, the loss of one molecule makes a critical complex unstable, with 74 becoming greater
than 'r’!g‘ and dg/dt < 0, The size of the complex now decreases spontaneously and evaporation takes place,
In this way, the threshold unstable complex at the beginning of evaporation is one confaining (8or—1) mole-
cules.
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Fig. 1., Change in the time (sec) of free motion r_ and in
the time (sec) of interaction between a molecule and a com~
plex 7%, as functions of the number of molecules in the
complex g (pcs): 1) free motion time 7, 2) time of inter-
action between a molecule and the complex q-;,
Fig. 2. Number of molecules in a condensation nucleus, as
a function of the vapor subcooling temperature interval: 1)
calculated by Egs. (13) and (15); 2) according to Ya, I,
Frenkel’ [1].

Based on the foregoing discussion, we will determine the number of molecules contained in a complex
of critical size,

Considering (4a) and (4b) as well as (5) and (5a), we write

* o L_A_ Gkl __U‘O
xg-l/2(1— g} i ‘/ exp(\ T), 6)

and

Ve A am
Tg = L USE = 1 l/ le' @
+ve 1+ —
g
As was noted earlier, assuming 7 §=71g and taking into account (6) and (7) will yield the equation:

| 3 —\2 1 A U
B T e W ) ®
cr

which determines the number of molecules g¢p in a complex of critical size, When gey > 1, with the quantity
1 /gzcr negligible compared to unity, we can write

(1 VEef =4 Bew (=2 9)

_— 3
gcr:8 [I/%L exp <— 2(/;3" )—71] ’ 10)

or

The radius of such a complex is

~2r [‘/— exp ( %T) ?1} . 11)
Inserting the free path length of a molecule [2]
kT
YT darkp {12)
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into (10) and (11), we arrive at
B 1 k1 U, 8
g = I:—Vﬂ l/ ; exp ( % ) — 1:] (13)

1 KT f U,
L ap =15 e — €X _ — ] 5 14:
et []/:;Arl p P ( 2kT) ] a4)

and

which relate the magnitudes of g, and rey with the state properties of the gas: its pressure p and tempera-
ture T,

We now determine the radius of a condensation nucleus rzr corresponding to the number of molecules
in a complex

gL, =8+ 1L (15)
Using (3), we can write for these conditions:

3  —_—
r=ryg,+1L (e)

The formulas obtained here indicate that, knowing the saturation temperature T, which corresponds
to the vapor pressure p, one can, for every amount of vapor subcooling AT, determine without difficulty the
size of a condensation nucleus rgy and the number of molecules gor in a complex of critical size.

As an example, we determine the magnitudes of g§,. for water vapor at p = 0.5 bar.

The calculated values of gér are given in Fig. 2 as a function of the subcooling temperature interval
AT. TFor comparison, the values of gey calculated by the known Ya, I, Frenkel' formula [1] are also shown
here. It is evident that the number of molecules gér and thus the size of the condensation nucleus rgr, as
was to be expected, decreases considerably when the subcooling temperature interval AT increases, The
widest discrepancy between values calculated by Eq. (1) and by the corresponding Ya, I. Frenkel' formula
[1] is observed in the range of slight subcooling, when the condensation nuclei contain sufficiently larger
numbers of molecules. As AT — 0, the size of a condensation nucleus according to Ya. I. Frenkel' be-
comes rgr — o, which corresponds to a flat separation surface, Under these conditions, calculations by
the formulas derived here yvield finite values for the radius of condensate drops. In the range of greater
AT values, at the same time, the magnitude of gor calculated by Eq. (10) is several times greater than that
of g, according to Ya, I, Frenkel® [1].

In our opinion, these discrepancies relate to the fact that the equations for g§,. and r&y have been
derived here from the concept of a dynamic equilibrium on a microscopic scale between molecular clusters
and gas molecules, while the Ya, I, Frenkel' formula is based on the conditions of thermodynamic equilib-
rium in a macroscopic system,

2., Rate of Growth of Drops

When the free path length for a gas molecule )y is much greater than the size of liquid drops rg, then
the steady-state heat and mass transfer between a drop containing g molecules and the vapor molecules is
discrete in character and can be described by the equation:

gi, =e; Tgi, —ep Tig an

where q is the heat of condensation per molecule, if, iy, and iy are the quantities of molecules falling on a
drop, absorbed, and reflected per unit time, and Tg, T are the drop and the gas temperature respectively.

The quantities of enei'gy per one falling molecule (ef) and per one reflected molecule (er) of gas in
Eqg. (17) can be expressed as [3]

e = —— KT (18)

and
e, =-——KkT,, 19)

where vy is the adiabatic exponent,
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Obviously,

fp=1ly +i,. (20)
Considering (18), (19), and (20), we can write (17) as follows:
1 1 .
—— KT, | i, =-—— FAT (21)
(q+v—1 g) R
where
AT =T,—T.
It follows from (21) that
_— 1 kAT ¢ 22)
Gty = | T, y—1 ¢
g(v—1)

According to the kinetic theory of gases [2], the number of vapor molecules colliding every second with
a drop of radius ry is equal to

1
- . 8kT n VT
ig=y2n(r + ry) l/mm [1 +<?:) J 7y (23)
when 1y « g, this expression simplifies to
5 8kT
i :;/2ur21/ n. (24)
f g nm, 't
Introducing here the heat-transfer coefficient
V2 k_ o/ 8kT 1 25
=g =i ) wm M L, @)
glyv—1)

and considering (24), we obtain from (22)

giq = 4atr?AT. (26)
Substituting
p=—te,
giy—1)
and
~ 8kT
€= l am, '
we have
Ve k c 270
=TT =TT Ipe
or, considering the equation of state for a gas,
Ve c
— Rp —— 28
“=Ip—n ¥ T e
where R is the gas constant and p is the gas density.
Using the results of {2], we write the kinematic viscosity of vapor as
v="Laz (29)
Inserting the value of ¢ from (29) into (28), we have
3Ve v 1
= « == Rp .
CTEGoD O E P TEB 6o
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Let us now determine ¢ as a function of Knudsen and Prandil numbers

Ay o Gvp
Kn= 5y Pr = A 31)

where cp is the specific heat of a gas at constant pressure,

For this purpose, we transform (30) into
o 32 Pr R 1 32)

Here ¢ is the heat transfer coefficient for a sphere in a continuous stream,

Equation (32) represents the most general solution to this problem, in terms of the Pr and Kn numbers,
the ratio R/cp, the adiabatic exponent v, and the parameter g accounting for the ratio of the energy per one
molecule in a drop to the bond energy of this molecule,

According to Eq, (32), for given physical gas parameters (R, Cp» v) the relative heat transfer coef-
ficient is a function of two basic variables: the Kn number and 3, When 8 ~ 0, Eq. (32) converts directly
into the known G. Gyarmathy equation [4],

For the operating conditions of a stream turbine with water drops suspended in a water vapor atmos-
phere, we obtain from (32):

o 0,38 1

038 1 . 33)
oy I4+p Kn

Corresponding calculations by the G. Gyarmathy equation (for g ~ 0) [4] yield a numerical value of 0,32 for
the coefficient in (32).
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